北海道津別町上里産の中新-鮮新世植物群

植村和彦^{1*}·鈴木三男²

1 262-0032 千葉県千葉市花見川区幕張町 5-411-1-301 2 北海道標津郡標津町字標津 1326-236

UEMURA Kazuhiko* & SUZUKI Mitsuo: A Mio–Pliocene flora from Kamisato in eastern Hokkaido, Japan

*💌 kzhuemura@hotmail.com

Plant megafossils are preserved in fluvio-lacustrine beds of the lower part of the Satomi Formation in Kamisato of Tsubetsu Town. The assemblage (Kamisato flora) is composed of one hepatica, three evergreen conifers, 13 deciduous dicot trees, and one monocot herb. *Alnus* sp. cf. *A. crispa* is dominant, associating commonly by *Picea* and betulaceous species. The assemblage represents a Mio–Pliocene fluvio-lacustrine flora near coastal lowland, as indicated by plant-bearing sediments, mode of fossil occurrence, and ecology in similar living equivalents.

Keywords fossil flora, megafossils, Mio-Pliocene, Tsubetsu Town, Hokkaido

はじめに

北海道東部, 網走郡津別町の上里周辺に分布する 新第三紀後期の陸成層(里見層)から保存の良い植 物化石を産出することが,川上郡弟子屈町の屈斜路 湖畔でロッジ「鱒や」を経営する橘利器氏によって発 見された.津別町の北西に隣接する北見市や紋別郡 遠軽町からは新第三紀後期の社名渕植物群(Tanai 1961; Tanai & Suzuki 1965)や留辺蘂植物群(Tanai & Suzuki, 1965)などが知られている.今回発見され た植物化石群(上里植物群)は、これら既知の植物 群に加えて,北海道東部の新第三紀後期の植物群を 考察する上で重要な追加資料となる.

植物化石の採集は2013年9月に橘氏の案内で行い,さらに2014年7-8月に化石の追加採集と化石層 周辺の地質の検討(植村)を行った.植物化石群とし て考察するには化石試料が十分ではないが,ここに 上里植物群の概略を紹介したい.

本稿をまとめるにあたって, 化石の発見から多大の 援助を頂いた橘利器氏と, 化石標本の整理と登録作 業を行って頂いた矢部淳博士(国立科学博物館地 学研究部)に感謝の意を表します.

地質概略と植物化石産地

津別町南部には,漸新世-前期中新世の厚い海成

層 (津別層群)が発達し,これを後期中新世-鮮新世 の上里層群が不整合で覆う(表1).上里層群は下部 の美都層と上部の里見層に区分される(山口・佐藤 1966),美都層の下部は安山岩質の火山砕屑物,上 部は凝灰質泥岩,珪藻質泥岩が発達し,海生の貝 化石や珪藻化石を含む.里見層は火山砕屑岩を主と し,凝灰質砂岩,泥岩,安山岩溶岩などから構成さ れる.

里見層群の珪藻化石を検討した沢村・山口 (1963)によると、美都層と里見層最下部は海生の 珪藻化石群、その上位の里見層は淡水生の珪藻化 石群によって特徴づけられる。すなわち、里見層の堆 積は浅海から淡水環境に変化し、上里植物群を産す る層準やその上位の里見層の大部分は海に隣接し た低地の淡水-陸上環境であったと考えられる。

上里層群の全層厚は、構造が明らかでないことや、 新期火山岩類に広く覆われるため算定が困難である が、山口・佐藤 (1966) は1,000 m以上に達すると推 算している。上里層群は、鮮新世後期 – 更新世の屈 斜路および阿寒カルデラおよび屈斜路カルデラの形 成に伴う火山岩・火山砕屑岩類に不整合で覆われる (勝井 1962; 佐藤 1965; 山口・佐藤 1966)。

なお,里見層の上位には,植物化石を含んだ奥上 里夾亜炭層が津別川本流沿いに分布する(山口・佐

時代	地層	岩相
鮮新世-更新世	阿寒火山および屈斜路火山	溶岩,火山砕屑岩類
後期中新世 – 鮮新世	上里層群 里見層 美都層	凝灰質砂岩, 凝灰角礫岩, 軽石, 凝灰岩, 泥岩, 安山岩溶岩など 泥岩, 砂岩, 凝灰岩, 凝灰角礫岩
漸新世 – 前期中新世	津別層群 津別層	硬質頁岩,シルト岩,砂岩,凝灰岩

表1. 上里周辺地域の地質層序概略.

藤1966).本層の層位については,現在,露頭状況 が極めて悪く不明な点が多い.山口・佐藤(1966)は 本層が里見層を不整合で覆い,鮮新世であろうとし ている.この点については,本層が里見層と一連の 地層である可能性を含めて,今後検討をする必要が あろう.

今回検討した植物化石産地は,津別川の支流,セ

図1. 植物化石産地. 地形図は国土地理院の1:50,000 図幅 「上里」を使用.

ンウンツベツ川の河床(津別川合流点から3.5 km上 流)で,里見層(山口・佐藤1966)の下部層準である (図1). 植物化石は,里見層下部の凝灰質砂岩層 の上位に重なる暗灰色泥岩,シルト岩,砂岩,礫岩, 亜炭層の互層部の泥岩層から多産する.

上里植物群

1. 産状と量的産出状況

多数の葉器官が層理に平行に散在あるいは密集 して産出し,果実・種子を伴う.保存状態の良い葉 化石は泥岩層に見られる.小枝など材化石も各岩相 から多数産するが,一部の礫岩層を除いて圧縮変形 しているので種類の識別は難しい.

野外において量的な産出状況 (カウンティング) は 行っていないが,持ち帰った化石試料での各種の産 出数を表2に示す.この表から明らかなように,本化 石群集 (上里植物群) は,カバノキ科のミヤマハンノキ に比較される種 *Alnus* sp. cf. *A. crispa*の多産によって 特徴づけられる.

2. 組成的特徴

上里植物群には、以下に示すようにコケ植物1種, 裸子植物(針葉樹)の2科3種,被子植物の8科14 種の計18種(タクサ)が認められる(表3).このうち, コケ植物はタイ類,被子植物の単子葉類はイネ科と 認められるが,それぞれ便宜的な形態属*Hepaticites*, *Poacites*に充てた.また,裸子植物のマツ科針葉樹に は属種未定のグループが含まれる.最も多様な科は カバノキ科の2属4種で,次いでムクロジ科の2属3 種と続く.その他の科は1-2種の構成で,上里植物 群の種多様性は低い.

マツ科属種未定を除く全13種のうち、草本は2種

(*Hepaticites* sp., *Poacites* sp.) で,残り11種は木本で ある. これら11種の近似現生種をみると,2種の針 葉樹は常緑,9種の被子植物(真正双子葉類)はすべ て落葉の生活型(abscission habit)を有する.

考察

1. 上里植物群の組成的特徴と古植生

上里植物群はミヤマハンノキに比較される種 Alnus sp. cf. A. crispaを優占種とする落葉広葉樹を主体と し、これに常緑針葉樹とイネ科草本が混交した組成 を示す.また、化石産出量に比べて種類数(18種) が少なく、多様性の低い植物化石群ということができ る.

計18種のうち, *Hepaticites*, マツ科属種未定, *Poacites*の3種を除く15種の近似現生種をみると, 現在の北海道に普通で,しばしばそれ以北にも分

表2. 植物化石の量的な産出状況 (部位の記述のない種は, すべて葉器官).

	個数	%
Alnus sp. cf. A. crispa	114	47.5
	(葉:108)	
	(果序:6)	
Picea sp. cf. P. jezoensis	30	12.5
	(葉:17)	
	(球果:3)	
	(種子:10)	
マツ科	15	6.3
単子葉類 (イネ科近縁)	12	5.0
Betula sp. cf. B. maximowicziana	11	4.6
Populus sp. cf. P. maximowiczii	9	3.8
Acer subcarpinifolium	9	3.8
	(葉:5)	
	(翼果:4)	
<i>Betula</i> sp.	8	3.3
Thujopsis miodolabrata	8	3.3
Alnus sp. cf. A. hirsuta	5	2.1
	(葉:2)	
	(果序:3)	
Populus sp. cf. P. sieboldii	4	1.7
Fagus palaeojaponica	3	1.3
その他の種の合計	12	5.0
	計 240	

布するのは11種 (Picea sp. cf. P. jezoensis, Sorbus sp., Ulmus sp., Alnus sp. cf. A. crispa, A. sp. cf. A. hirsuta, Betula sp. cf. B. maximowicziana, B. sp., Populus sp. cf. P. maximowiczii, P. sp. cf. P. sieboldii, Fraxinus sp., Aesculus sp.) である. 残り4種のうち, 3種 (F. palaeojaponica, Acer subcarpinoides, A. sp. cf. A. rubrum (A. pycnantum)) の近似現生種は現在の北海道には 分布しない. また, Thujopsis miodolabrataの近似現 生種は,渡島半島南部までで北海道中-東部には分 布していない. これら4種も温帯の樹種であるが,本

表3. 上里植物群の組成.

コケ植物 (タイ類所属未定)
Hepaticites sp.
裸子植物
マツ科Pinaceae
Picea sp. cf. P. jezoensis (Sieb. & Zucc.) Carr.
Pinaceae gen. et sp. indet.
ヒノキ科 Cupressaceae
<i>Thujopsis miodolabrata</i> Tanai & N. Suzuki
被子植物
イネ科 Poaceae (Gramineae)
Poacites sp.
バラ科Rosaceae
Sorbus sp.
ニレ科Ulmaceae
<i>Ulmus</i> sp.
ブナ科 Fagaceae
Fagus palaeojaponica Tanai & Onoe
カバノキ科Betulaceae
Alnus sp. cf. A. hirsuta Turcz.
Alnus sp. cf. A. crispa (Aiton) Pursh
Betula sp. cf. B. maximowicziana Regel
<i>Betula</i> sp.
ヤナギ科 Salicaceae
Populus sp. cf. P. maximowiczii Henry
Populus sp. cf. P. sieboldii Miquel
ムクロジ科 Sapindaceae
Acer subcarpinifolium Tanai & N. Suzuki
Acer sp. cf. A. rubrum L.
Aesculus sp.
モクセイ科Oleaceae
Fraxinus sp.

植物群ではより南方の要素ということができる.

本植物群の示す古植生は、堆積相と群集の特徴 から海岸低地の河川周辺に広がった植生で、低地湿 原とその周辺に広がった常緑針葉樹を混交した落葉 広葉樹林ということができる. Alnus sp. cf. A. cristaの 近似種ミヤマハンノキは、現在の北海道に普通の種 で、しばしば亜高山帯まで分布する(高谷 1955; 佐 藤 2009など). 現生ミヤマハンノキの生態と比較する と、本種が低地湿潤地の上里植物群の優占種である ことがやや特異である.

2. 北海道東部および北部の新第三紀後期植物群と の比較

渡島半島を除く北海道には、漸新世、中新世、鮮 新世の植物群が知られている(図2). 上里植物群に はブナ属のFagus palaeojaponica(中期中新世以降に 産出)を含み、ハンノキ属、カバノキ属、ドロヤナギ 属の種が現生種により近縁である点で漸新世の若松 沢植物群や、前期中新 – 最前期中新世の宗谷、サキ ペンペツ、および滝ノ沢植物群とは異なっている. 新 第三紀後期(中期中新世 – 鮮新世)の植物群は、北 海道東部 – 北部に多数知られている.

北海道東部の中新世植物群については、Tanai &

Suzuki (1965) によって、社名淵および留辺蘂植物群 の詳細な記載報告がなされている。前者は社名淵層 から、後者は小松川層から産出したもので、それぞ れ当時の時代論に従って,後期中新世(三徳型)と鮮 新世(新庄型)の植物群として位置づけられた。最近 の植物化石層に関連した火山岩の放射年代を考慮 すると(八幡・西戸1995;八幡ら1999),社名渕植物 群はおよそ8 Ma(後期中新世),留辺蘂植物群は7-5 Ma(後期中新世あるいは中新-鮮新世)とみることが できる. 両植物群ともブナ属のFagus palaeojaponica (= F. protojaponica: Tanai & Suzuki 1965) が優占し, ヤナギ科、カバノキ科、ニレ科、バラ科およびムクロ ジ科 (カエデ科)の属種を伴った、多様な落葉広葉樹 からなる、マツ科およびヒノキ科の常緑針葉樹も普通 であるが、常緑広葉樹は社名渕植物群でクスノキ属 1種のみ、留辺蘂植物群では欠如している。

Tanai & Suzuki (1965) によると、社名渕植物群に は70種(30科51属)、留辺蘂植物群には50種(19 科31属)が認められている。両植物群とも湖成層に 含まれ、湖盆周辺のより広域的な植生を反映したも ので、ブナ属の*F. palaeojaponica*を優占種とする「ブナ 林」の組成を示していると考えられる。

それぞれの植物群で化石採集量の違いはあるが,

図2.北海道北西部の漸新世-鮮新 世植物群の分布.▲:中期中新世の 後半-前期鮮新世.●:前期中新世 -中期中新世の初め.+:漸新世.

上里植物群(18種)は両植物群に比べてはるかに多様性の低い群集である. *F. palaeojaponica*は上里植物 群にも存在するが,優占種はハンノキ属の*Alnus* sp. cf. *A. crispa*である. こうした違いは,上里植物群が亜炭 層を伴う低地河川域に堆積した地層に含まれ,堆積 地周辺のより狭い植生を反映していることに起因して いる.

上里植物群と社名渕・留辺蘂植物群でみられる, 堆積地の様式と周辺植生の違いは北海道北部の新 第三紀後期の植物群でも認められる。すなわち,湖成 層に含まれる中期中新世の湖南植物群(植村1991; 成田ら2012) はF. palaeojaponicaを優占種とし、社名 渕植物群や留辺蘂植物群の同様,多様な温帯林組 成を有する。一方、中-後期中新世の河川成堆積 層に含まれる上名寄植物群(成田ら2017)では、ヤ ナギ属 Salix misaotatewakii, カツラ属 Cercidiphyllum crenatum, あるいはトウヒ属 Picea sp. がそれぞれ優占 する群集が認められ、カエデ属Acer subcarpinifolium やハコヤナギ属などを普通に随伴する河畔-湿地植 生の組成を有している. 上名寄植物群と同様な群集 は、美深周辺にも広く知られている(棚井ら1992;植 村未発表). なお、上里植物群でみられる、Alnus sp. cf. A. crispaを優占種とする群集は上名寄や美深地域 からはまだ知られていない.

以上の新第三紀後期植物群のほかに,北海道東 部には糠平植物群(Tanai 1961; 鈴木 1967)が知ら れている.本植物群は後期中新世あるいは鮮新世の 湖成層中の群集であるが,ブナ属は稀で,ハコヤナ ギ属,ハンノキ属,カバノキ属,ニレ属,カエデ属に 加え,マツ科針葉樹が多産し,より内陸の植生を反 映している可能性がある.

3. 上里植物群を含む里見層の時代

上里層群下位の美都層は,海生の貝化石を産す るほか,Actinocyclus ingens, Coscinodiscus elegans, Denticula spp. などの優占する珪藻化石群集が報告さ れている(沢村・山口1963;山口・佐藤1966).ま た,小泉(1988)は美都層の珪藻群集をDenticulopsis katayamae帯からTharassionema schraderi帯の範囲内 (9.2–7.6 Ma (Yanagisawa & Akiba 1998); Maは100 万年)の後期中新世とした.沢村・山口(1963)は, 上里層群上位の里見層の最下部層準からも海生珪 藻群集を報告しているが,生層序年代を特定するに は至っていない.

美都層中に夾在する火山岩類の放射年代は, 8.91,5.48 Ma (広瀬・中川1995) および6.25,6.49 Ma (八幡ら1995)のK-Ar年代が報告されている.い ずれも後期中新世を示し,珪藻群集の生層序年代と 矛盾しない.なお,広瀬・中川(1995)は、5万分の 1地質図幅「上里」(山口・佐藤1966)により里見層と された安山岩について,0.87 MaのK-Ar年代を報告 している.この安山岩の年代は明らかに新期の火山 岩類と考えられ,後述の屈斜路カルデラ形成時のも のと考えられる.

里見層は不整合で阿寒火山や屈斜路火山の火山 岩類に覆われる.木禽岳周辺の火山岩類は、阿寒カ ルデラ形成前の阿寒火山岩類(外輪山溶岩類)で、 3.62,3.70,3.85 MaのK-Ar年代が報告されている (Goto et al. 2000).また、屈斜路カルデラ形成前 の屈斜路火山岩類(外輪山溶岩類)は、1.6-1.0 Ma の多数のK-Ar年代が知られているが(国分ら1994; 広瀬・中川1995;Goto et al. 2000),池田・清水 (2013)は、さらに古い、3.7 MaのK-Ar年代を報告 し、屈斜路火山の形成が阿寒火山岩類と同じく鮮新 世にさかのぼることを示した。

上里地域の南部,阿寒湖地域の阿寒層群や,西-南西部の弟子屈地域に分布するシケレポンベツ層は タカハシホタテ Fortipecten takahashii ほかの貝類化石 群を含む浅海層である.この海成層の下位には,阿 寒湖地域では飽別層,湖畔層があり,それぞれ2.50 Maと3.98 MaのK-Ar年代,弟子屈地域では一部に 海生の貝化石を伴う夕映川層があり.2.63 Maおよび 2.81 MaのK-Ar年代が知られている(八幡ら1995). なお,タカハシホタテを特徴的に含む貝類化石群(滝 川-本別動物群,Uozumi 1962;鈴木2003)の時代 は、中新世末-更新世前期にわたっているが、北海 道東部の本別動物群やその相当層では、2-3 Maの 放射年代(八幡ら1995)を示すことが多い

以上の生層序および放射年代から,里見層の時代は,およそ6-4 Maの後期中新世末から前期鮮新世と考えられる.

まとめ

北海道網走郡津別町上里の南、センウンツベツ川 の里見層下部から得られた植物化石群集(上里植 物群)を検討した. 化石層は暗灰色泥岩, シルト岩, 砂岩、礫岩、亜炭の互層部で、泥質岩に保存の良い 植物葉、果実・種子を含んでいる。これまでにコケ植 物1種,裸子植物(針葉樹)3種,被子植物14種,計 18種を認めた、被子植物は1種のイネ科草本を除き、 13種すべてが落葉広葉樹である.上里植物群の構成 種の近似現生種は温帯-亜寒帯に分布するが、アス ナロ属、ブナ属、カエデ属の種のように、現在の北 海道東部には分布しない要素も含んでいる。上里植 物群の優占種はミヤマハンノキに比較される種で、化 石産出点数の半分近くを占める点が特異で、種構成 の多様性は低い. 化石層の堆積相, 亜炭層の常在, 植物化石の産状,および近似現生種の生態を考慮す ると、本植物群は中新世末-前期鮮新世の海岸低地 の河川周辺湿潤地の植生を示していると考えた。

化石の記載

裸子植物および被子植物の配列は邑田・米倉 (2013)に、現生種の種名は北村・村田(1971, 1979)にそれぞれ従った。また、化石種については 原典と若干の文献を挙げた。今回扱った上里産の化 石標本は、一括して国立科学博物館地学研究部の 古植物標本(NSM-PP 13374–13459)に登録・保管、 以下の記述にある図示標本はPP 番号で略記した。な お、とくに断りのない標本は葉、小葉および枝葉であ るが、その他器官の場合はそれぞれを記述した。

コケ植物 Bryophyta

タイ類所属未定Hepaticopsida incertae sedis タイ類の1種*Hepaticites* sp. (図3A)

茎葉状の植物体は長さ10 mm, 幅約2 mm, 葉は 茎に斜上, 基部は0.3 mm長で互生状につき,中肋 はなく,長さ約0.8 mmの広楕円形,葉縁は不明瞭 であるが,明らかな歯はみられない. ツボミゴケ目 Jungermannialesなど,茎葉状のタイ類と考えられる.

図示標本: PP 13409.

裸子植物 Gymnospermae

マツ科 Pinaceae

トウヒに比較される種 Picea sp. cf. P. ezoensis (Sieb. & Zucc.) Carr. (図 3B-I)

3点の球果に,多数の遊離した種子と針葉がみら れる.球果は不完全であるが,長楕円形,長さ約8.5 cm(推定),幅2.0 cm,鱗片(種麟)の上部は三角状 に尖り,鋸歯縁となる.種子は有翼で,長さ6.5-10 mm,幅2.5-3.0 mm,種子は楕円形で長径2-3 mm. 扁平な葉は直線ないし緩く湾曲するものが多く(図 3G,H),大きな葉は長さ22 mm,幅2.4 mmに達す る.

球果鱗片や,直線状の扁平な葉の特徴から,本種 は現生トウヒ(エゾマツ)に近縁な種と考えた.共存す る有翼種子は,トウヒの他マツハダ P. bicolor (Maxim.) Mayrなどにも類似する.

図示標本: PP 13427a, 13410 (球果); PP 13374a, b, 13375a (種子); PP 13380b, 13411, 13414 (葉).

マツ科属種未定 Pinaceae gen. & sp. indet.

上記エゾマツに比較される種のほかに、トウヒ属、 カラマツ属などのマツ科と考えられる針葉が見られる が、いずれも極めて断片的である.

ヒノキ科 Cupressaceae

ムカシアスナロ*Thujopsis miodolablata* Tanai & N. Suzuki (図4A-C)

Thujopsis miodolablata Tanai & N. Suzuki 1963, Tert. Fl. Jap., I, p. 105, pl. 3, figs. 9, 10. Huzioka & Uemura 1973, p. 703, pl. 3, figs. 9–11.

本種は現生アスナロ*Thujopsis dolabrata* Sieb. & Zucc. に類似の葉形態群に与えられた化石種で,日本の中新世の地層から散点的に報告されている.葉はクロベ属*Thuja*に似るが,側部の葉は長さ3-4 mmと大きく,広く開出することや,裏面に広い気孔条が見られることで区別できる.現生アスナロの変種ヒノキアスナロvar. *hondai* Makinoは,本州から北海道渡島半島南部まで分布している.

図示標本: PP 13376, 13401b, 13417.

被子植物 Angiospermae

単子葉植物 Monocotyledoneae

イネ科属種未定 Gramineae gen. & sp. indet. (図5A, B)

イネ科の葉はしばしば産出するが、いずれも葉の 基部や先端部の欠いていて、属種は未定.葉は幅 が10-14 mm,主脈は約20本で平行脈、主脈間に はしばしば1亜主脈(主脈と二次脈の中間の太さ)を 伴い、さらに主脈間あるいは主脈と亜主脈間に1本の 2次脈、さらにそれら直角につなぐ3次脈が認められ る.

図示標本: PP 13418a.

真正双子葉植物eudicots

バラ科Rosaceae

ナナカマド属の1種 Sorbus sp. (図 6A-C)

左右不対象の葉身,単鋸歯状または一つの小鋸 歯を有する重鋸歯状の規則的な鋭三角形鋸歯,3次 脈のパターンなどからナナカマド属と判定した.日本 に分布する現生種では,温帯-亜寒帯のナナカマド*S. americana* Marsh. subsp. *commixta* (Maxim.) Kitamura に類似する.

図示標本: PP 13429a, 13454, 13455a.

ニレ科Ulmaceae

ニレ属の1種 Ulmus sp. (図7D, E)

主 脈 に 対 し て 比 較 的 太 い 2 次 脈, 直 送 状 (craspedo-dromous) の 脈系, 重 鋸 歯 の 鋸 歯 は 「 ニ レ型」(上部,下部とも 鋭 先形)の 重 鋸 歯 を 有 す る. 本種は 1 点のみの 産出なの で 断定的 で は ないが,日 本の 現 生種(ハルニレ U. davidiana Planch.,アキニ レ U. parvifolia Jaquin,オヒョウ U. laciniata (Trautv.) Mayr)よりも 朝鮮 半島 – 中国の チョウ センニレ U. macrocarpa Hance など に より 近縁 と考えられる.

図示標本: PP 13397a.

ブナ科 Fagaceae

ムカシイヌブナ*Fagus palaeojaponica* Tanai & Onoe (図 7A–C)

Fagus palaeojaponica Tanai & Onoe 1961, p. 35, pl. 3, figs. 1–3. Uemura 1988, pl. 2, figs. 1–7; text-fig. 22.

Fagus protojaponica Tanai & N. Suzuk, 1965, p. 21, pl. 6, fig. 2; pl. 16, fig. 8; pl. 20, fig. 5.

2次脈は主脈より直線的に規則正しく配列し,波 状の葉縁を有する.3次脈は2次脈より直角に派生 し,密脈型(11本/cm).現生種では,日本のイヌ ブナ*F. japonica* Maxim.,朝鮮(鬱陵島)のタケシマ ブナ*F. multinervis* Nakaiと中国のエングラーブナ*F. engleriana* Seem.が3次脈の密脈型に含まれる.本種 は北海道東部の後期中新世-鮮新世の社名渕およ び留辺蘂植物群(Tanai & Suzuki 1965)や,北海道 北部の中期-後期中新世の湖南植物群(植村 1991; 成田ら2017)および上名寄植物群(成田ら2017)な どから知られ,それぞれの植物群での優占種である. 図示標本:PP 13395, 13407a.

カバノキ科 Betulaceae

ケヤマハンノキに比較される種 Alnus sp. cf. A. hirsuta Turz. (図 8A-C)

2次脈が主脈より鈍角(60-70°)で派出し、ゆるく カーブしながら鋸歯に至る直送状であることや、重鋸 歯の特徴からケヤマハンノキに類似する種類と判定し た.上里植物群に共存するハンノキ属*Alnus*の果序に は2型が認められ、果柄長は不明だが、比較的に大 型(約2 cm長, 10.8 cm幅)のものを本種に含めた.

図示標本: PP 13380a (葉); 13400c, d (果序).

ミヤマハンノキに比較される種*Alnus* sp. cf. *A. crispa* (Aiton) Pursh (図 8D; 図 9A-D)

葉は広卵形,大きなもので長さ18 cm,幅14 cm以 上に達する.葉頂は鋭頭,葉脚は左右不対象の浅心 形.葉柄はやや太く,長さ2-3 cm.葉縁は重鋸歯 縁.鋸歯はその上部,下部とも鋭尖で.2次脈間に 多い場合約10に達する.葉組織は膜質.

脈系は2次脈が鋸歯に至る直送状 (craspedodromous); 主脈は明瞭で直線状-緩い湾 曲状; 2次脈も明瞭で直線状, 12-15本が広角(40-60℃主脈より派生,葉基部の太い2次脈の下に1-2 本の細い2次脈を伴うことが多い.葉縁近くでは鋭角 的に1-3本の分岐2次脈を伴い,それぞれ鋸歯に至 る; 3次脈は2次脈に対して鈍角-直角に派生,約5 本/cm; 4-5次の細脈はそれぞれ矩形をなす. 果序は長さ1.2 cm,幅1.0 cm,多数の果麟からなり,長柄(1.7 cm+).

本種は上里植物群でもっとも多産する特徴種 の一つである.現生種では、ミヤマハンノキsubsp. maximowiczii Call.を含むA. crispaやA. viridis (Chaix) DCに近縁である.前者はユーラシア東部か ら北アメリカ中-北部,後者はヨーロッパアルプス、と もに温帯-亜寒帯に分布する.なお,A. crispaは、ヨー ロッパアルプスに分布するA. viridis (Chaix) DCの 亜種とされることも多い (例えばKrüssmann 1960). さらに、種名 viridis はA. alnobetula の後続基礎異名 (later basionum)とする考え (Chery 2015) もあり、そ の場合、ミヤマハンノキの学名はA. alonobetula subsp. maximowiczii (Call. ex C. K. Schneid.) Cherryが正名 となる.

現生ミヤマハンノキに類縁を有する化石*A.* protomaximowiczii Tanaiは日本の中新世の地層から 産出するが (Huzioka & Uemura 1974など),上里植 物群のように優占種となる例は知られていない.ま た,上里植物群の量的産状や化石層の堆積環境か ら考えると、本種は湿性環境の優占種の一つと考え られる.これらのことから、本種は現生ミヤマハンノキ に近縁な化石種である可能性が高く、表皮細胞の特 徴 (クチクラ分析)など、さらに検討する必要がある.

図示標本: PP 13383a, 13384, 13428a, 13432 (葉); 13425(果序).

ウダイカンバに比較される種 *Betula* sp. cf. *B. maximowicziana* Regel (図10A)

本種は前述のミヤマハンノキに比較される種 Alnus sp. cf. A. maximowiczii に似るが, 重鋸歯の特徴(鋭尖 形で尾状の先端を有する)や,左右対称の葉脚,最 下部の2次脈が太いことなどで区別できる.現生ウダ イカンバの葉脚は顕著な心形にになるのに比べ,本 種のそれは浅い心形を有する.

図示標本: PP 13391a.

カバノキ属の1種 Betula sp. (図10B, C)

葉頂は不明であるが,卵形で,2次脈は主脈 より45-30°で派生,直線的に鋸歯に至る直送状 (craspedodromous) 脈系で,重鋸歯を有する.日本 に現生のオノオレカンバ*B. schmidtii* Regelやヤエガワ カンバ*B. davurica* Pall. に比較できるが,不完全な標 本なので結論は保留した.

図示標本: PP 13387, 13393b.

ヤナギ科 Salicaceae

ドロヤナギに比較される種 Populus sp. cf. P. maximowiczii Henry (図11A, B)

上里植物群には2種のハコヤナギ属 Populus が認められる.広楕円形の本種は、やや規則的で低い鋸歯が配列し、太くて長い葉柄を有する.現生種ドロヤナギ (ドロノキ)は、北海道を含むユーラシア東部の温帯-亜寒帯に分布する.

図示標本: PP 13378a, 13419.

ヤマナラシに比較される種*Populus* sp. cf. *P. sieboldii* Miquel (図11C, D)

本種は低い歯芽状の鋸歯で,単鋸歯あるいは重鋸 歯状であることと,長い扁平な葉柄(図12C)に特徴 がある.葉柄の腺点は確認できなかったが,上記の 特徴から現生ヤマナラシに比較した.本種もドロヤナ ギ同様,北海道を含むユーラシア東部の温帯-亜寒 帯に分布する.

図示標本: PP 13382d, 13421.

ムクロジ科 Sapindaceae

ムカシチドリノキ Acer subcarpinifolium Tanai (図 12A– D)

Acer subcarpinifolium Tanai 1983, p. 347, pl. 9, fig. 5b; pl. 12, figs. 4, 5; pl. 13, figs. 3, 8; pl. 14, figs. 1-5. Uemura 1988, p. 153, pl. 4, fig.10.

Acer pseudocarpinifolium Endo, N. Suzuki 1963, p. 689, pl. 3, figs. 2, 3. Tanai & N. Suzuki 1965, p. 38, pl. 10, fig. 8; pl. 11, fig. 1.

単葉のカエデ属.葉は種小名が示すようにシデノキ 属 Carpinus に一見似るが,鋸歯の形状,主鋸歯の上 部に副鋸歯を伴うこと、3次脈の配列,分岐脈端を有 すること、さらに葉基部が耳状に膨れること(図13B) などで容易に区別できる.共存する翼果は大型で 5.0-5.8 cm長,0.6 cm幅,種子は紡錘形で約1.5 cm 長,対となる種子の接合部(contact scar)は3.5-3.8 mm長である.

本種は本州北部や北海道の中新世 – 鮮新世の地 層から産出し,北海道では道北(植村 1991;成田ら 2012,2017),道東(Tanai & Suzuki 1965)で普通に 産出することが知られている.本州,四国,九州に分 布する現生種チドリノキ*A. carpinifolium* Sieb. et Zucc. は本種と近縁であるが,本種の翼果の大きさは現生 種よりはるかに大きい.ムカシチドリノキは,化石の 産出層の堆積層を考慮すると,湿地近くの後背地に 優占していたと考えられる.また,湖成層にも普通に 産出することから,現生種チドリノキと同様,渓畔に も普通の植物であったと考えてよい.

図示標本: PP 13382c, 13398 (葉); 13399, 13400b (翼果).

ハナノキに比較される種 Acer sp. cf. A. rubrum L. (図 12E)

不完全な葉の化石が1点のみであるが、3裂葉の形状と鋸歯の特徴からハナノキあるいは北米の*A.* rubrum L. に近縁のカエデ属と考えられる.

図示標本: PP 13378b.

トチノキ属の1種 Aesculus sp. (図12F)

標本は1点のみであるが、2次脈が葉縁近くで上向 きに湾曲し鋸歯に至ることや、重鋸歯ではあるが、ほ ぼ同形の低い鈍鋸歯を有することから、本属への帰 属は容易に判定できる.中新世の前半に多いアニアイ トチノキ*A. majus* (Nathorst) Tanaiに類似するが、標 本が断片的なので結論は保留した。

図示標本: PP 13457.

モクセイ科 Oleaceae

トネリコ属の1種Fraxinus sp.(図5C)

不完全な小葉の化石が1点認められた. 主脈より 鈍角で派生する2次脈は葉縁近くで湾曲し, 鋸歯間 の湾入部に延びること, そこから派生する2次亜脈が 鋸歯中央より上部であること, 低い鋸歯の形状からト ネリコ属の小葉と考えた. 鋸歯の特徴は, 北日本や 朝鮮, 満州に分布する現生種ヤチダモ*F. madshurica* Rupr. に類似する.

図示標本: PP 13407b.

引用文献

- Chery J. 2015. New nomenclature combinations in the green alder species complex (Betulaceae). PhytoKeys 56: 1–6. doi: 10.3897/phytokeys.56.5225
- Goto Y, Funayama A, Gouchi N. & Itaya T. 2000. K–Ar ages of the Akan–Shiretoko volcanic chain lying oblique to the Kurile trench: implications for tectonic control of volcanism. The Island Arc 9: 204–218.
- 広瀬亘・中川光弘. 1995. 北海道東部, 屈斜路カ ルデラ地域の新生代火山岩類のK-Ar年代と第四 紀火山活動史. 地質学雑誌101:99-102.
- Huzioka K & Uemura K. 1973. The Late Miocene Miyata flora of Akita Prefecture, Northeast Honshu, Japan. Bulletin of the National Science Museum 16: 661–738, pls 1–18.
- Huzioka K & Uemura K. 1974. The Late Miocene Sanzugawa flora of Akita Prefecture, Northeast Honshu, Japan. Bulletin of the National Science Museum 17: 325–366, pls 1–11.
- 池田保夫・清水敬太. 2013. 北海道, 屈斜路火山 外輪山溶岩のK-Ar年代とその地質学的意義.地 球科学67:113-116.
- 勝井義男. 1962. 屈斜路湖. 5万分の1地質図幅,5 万分の1地質図幅説明書. 北海道開発庁,東京.
- 北村四郎・村田源. 1971. 原色日本植物図鑑. 木 本編1. 保育社,大阪.
- 北村四郎・村田源. 1979. 原色日本植物図鑑. 木 本編2. 保育社,大阪.
- 小泉格. 1988. 北海道東部地域における珪藻層序. 日本古生物学会 1988 年年会講演予稿集. p 91. 日本古生物学会,東京.
- 国分公貴・岡村聰・八幡正弘・古山勝彦・長尾敬 介. 1994. 北海道東部,新第三紀火山岩類の岩 石学的性質の変遷. 地質学雑誌100:658-574.
- Krüssmann G. 1960. Handbuch der Laubgehölze 1. Verlag Paul Parey, Berlin.
- 邑田仁・米倉浩司. 2013. 維管束植物分類表. 北 隆館,東京.
- 成田敦史・植村和彦・松本みどり・矢部淳. 2012. 北海道士別市北西,湖南から産出する中期中新世

植物化石群. 化石 92: 5-18.

- 成田敦史・松本みどり・矢部淳・植村和彦. 2017. 北海道下川町上名寄から産出する中新統パンケ層 産植物化石群集の古植生解析. 地質学雑誌 123: 131-145.
- 佐藤博之.1965.阿寒湖.5万分の1地質図幅,5 万分の1地質図幅説明書.地質調査所,川崎.
- 佐藤謙. 2009. 北海道における自然林再生に関する 一考察:北海道の樹木相と森林植生の特徴を踏 まえた生物多様性保全の観点から.開発論集83: 167-202.
- 沢村孝之助・山口昇一. 1963. 道東津別地域新第 三系の化石珪藻による分帯. 地質調査所月報14: 777-782, pl 1.
- 鈴木明彦. 2003. オホーツク海沿岸地域における 第三紀貝類化石群の古環境特性. 地球科学 57: 357-364.
- Suzuki N. 1963. Late Tertiary maples from northeastern Hokkaido, Japan. Journal of the Faculty of Science, Hokkaido University, ser. 4, 11: 683–693, pls 1–5.
- 鈴木順雄. 1967. 北海道の新第三紀後期植物群. 下河原寿男(編), 佐々保雄教授還暦記念論文集. pp 291-302. 佐々保雄教授還暦記念事業会, 札 幌.
- 高谷実. 1955. ユーニイシカリ川における主要樹種 の垂直分布.石狩川源流原生林総合調査団(編), 石狩川源流原生林総合調査報告.pp 189-201.旭 川営林局,旭川.
- Tanai T. 1961. Neogene floral change in Japan. Journal of the Faculty of Science, Hokkaidou University, ser. 4, 11: 119–398, pls 1–32.
- Tanai T. 1983. Revision of Tertiary Acer from East Asia. Journal of the Faculty of Science, Hokkaido Univ., ser 4, 20: 291–390.
- Tanai T & Onoe T. 1961. A Mio–Pliocene flora from the Ningyo-toge area on the border between Tottori and Okayama Prefectures, Japan. Geological Survey of Japan, Rep. 187: 1–62, pls. 1–18.

- 棚井敏雅・佐藤誠司・中筋治男. 1992. 北海道美 深町西部の新第三系の層序. 国立科学博物館専 報25:23-32.
- Tanai T & Suzuki N. 1963. Miocene floras of southwestern Hokkaido, Japan. In: Chaney RW (ed), Tertiary Floras of Japan 1. pp 9–149, pls 1–27. Geological Survey of Japan, Kawasaki.
- Tanai T & Suzuki N. 1965. Late Tertiary floras from northeastern Hokkaido, Japan. Palaeontological Society of Japan, Special Paper 10: 1–107, pls 1–21.
- Uemura K. 1988. Late Miocene floras in Northeast Honshu, Japan. National Science Museum, Tokyo.
- 植村和彦. 1991. 北海道名寄地域の温根別および 仁宇布産の中期中新世植物群. 国立科学博物館 専報24: 17-26.
- Uozumi S. 1962. Neogene molluscan faunas in Hokkaido: 1. Sequence and distribution of Neogene molluscan faunas. Journal of the Faculty of Science, Hokkaido University, ser. 4, 11: 507–544.
- 八幡正弘・久保田喜裕・黒沢邦彦・山本邦仁. 1999. 北海道北東部における浅熱水性鉱化作用作用の 時空変遷. 資源地質49:191-202.
- 八幡正弘・西戸裕嗣. 1995. 中央北海道北東部, 紋別-遠軽地域の新第三紀火山活動と構造運動. 地質学雑誌101:685-704.
- 八幡正弘・西戸裕嗣・岡村聡. 1995. 東部北海道, 網走 – 阿寒地域の新第三紀火山岩類のK-Ar年 代:阿寒 – 屈斜路隆起帯の形成について.地球科 学49:7-16.
- 山口昇一・佐藤博之. 1966. 上里. 5万分の1地質 図幅, 5万分の1地質図幅説明書. 地質調査所, 川崎.
- Yanagisawa Y & Akiba F. 1998. Refined Neogene diatom biostratigraphy for the northwest Pacific around Japan, with an introduction of code numbers for selected diatom biohorizons. Journal of the Geological Society of Japan 104: 395–414.

図3. A: ヘパティキーテス属の1種 *Hepaticites* sp., PP 13409. **B-I**: トウヒに比較される種 *Picea* sp. cf. *P. jezoensis* (Sieb. & Zucc.) Carr., PP 13427a (B, C), 13410 (D), 球果; 13374 (E), 13375a (F), 種子; 13411 (G), 13380b (H), 13414 (I), 針葉. スケールはE, Fを除き1 cm.

図4. A-C: ムカシアスナロ Thujopsis miodolabrata Tanai & N. Suzuki, PP 13376, 13417, 13401b. スケールは1 cm.

図5. A, B: ポアキーテス属の1種 *Poacites* sp., PP 13418a. BはAの一部拡大. C: トネリコ属の1種 *Fraxinus* sp., PP 13407b スケールはBを除き1 cm.

図6. A-C: ナナカマド属の1種 Sorbus sp., PP 13429a, 13455a, 13454. スケールは1 cm.

図7. A-C: ムカシイヌブナ*Fagus palaeojponica* Tanai & Onoe, PP 13395 (A), 13407a (B, C). **D**, **E**: ニレ属の1種 *Ulmus* sp., PP 13397a. スケールはB, Cを除き1 cm.

図8. A-C: ケヤマハンノキに比較される種 *Alnus* sp. cf. *A. hirsuta* Turcz., PP 13380a (A), 13400c, d (B, C, 果序). **D**: ミ ヤマハンノキに比較される種 *Alnus* sp. cf. *A. crispa* (Aiton) Pursh, PP 13425, 果序. スケールは1 cm.

図9. A-D: ミヤマハンノキに比較される種 (*Alnus* sp. cf. *A. crispa* (Aiton) Pursh), PP 13428a, 13432, 13384, 13383a. スケールは1 cm.

図10. A: ウダイカンバに比較される種 Betula sp. cf. B. maximowicziana Regel, PP 13391a. B, C: カバノキ属の1種 Betula sp., PP 13387, 13393b. スケールは1 cm.

図11. A, B:ドロヤナギに比較される種 *Populus* sp. cf. *P. maximowiczii* Henry, PP 13378a, 13419. C, D: ヤマナラシに 比較される種 (*Populus* sp. cf. *P. sieboldii* Miquel), PP 13382d, 13421. スケールは1 cm.

図12. A-D: ムカシチドリノキ*Acer subcarpinifolium* Tanai, PP 13382c, 13398 (A, B); 13399, 13400b (C, D, 翼果). E: アメリカハナノキに比較される種*Acer* sp. cf. *A. rubrum* L.), PP 13378b. F: トチノキ属の1種*Aesculus* sp., PP 13457. スケールは1 cm.